The Optimal Approach for Your Brain Tumor?

Brain Port

At PNI, for tumors of the frontal or middle fossa, we routinely use the *supraorbital* or *minipterional* approaches instead of traditional larger pterional (fronto-temporal) or bi-frontal craniotomies that involve larger scalp incisions and bony openings. Endoscopy and low-profile instruments allow excellent access to tumors through these smaller keyhole openings.

Supraorbital Eyebrow Craniotomy

Most common brain tumors types:

- Meningioma
- Glioma/GBM
- Metastatic brain tumor
- Craniopharyngioma

Mini-pterional Craniotomy

Most common brain tumors types:

- Meningioma
- Glioma/GBM
- Metastatic brain tumor
- Orbital tumor

Supraorbital Eyebrow Craniotomy

- "Sweet-spot" of fronto-temporal craniotomy
- Allows keyhole <u>retractor-less</u> entry into frontal fossa
- View and access expanded with endoscopy

Meningiomas Accessible via Supraorbital Route

Intra-axial Brain Tumors Accessible via Supraorbital Route

Olfactory Groove Meningioma Removed Through Left Eyebrow with Preserved Sense of Smell

Recurrent Glioblastoma Removed via Left Eyebrow

Eyebrow Craniotomy Cosmesis

CASE SERIES

The Supraorbital Eyebrow Craniotomy for Intra- and Extra-Axial Brain Tumors: A Single-Center Series and Technique Modification

Shaheryar F. Ansari, MD (5)**
Amy Eisenberg, NP**
Amanda Rodriguez, RN**
Garni Barkhoudarian, MD**
Daniel F. Kelly, MD**

*Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, California; †John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, California

Correspondence:

Daniel F. Kelly, MD, Pacific Neuroscience Institute, 2125 Arizona Ave, Santa Monica, CA 90405, USA. Email: kellyd@jwci.org

Received, September 27, 2019. Accepted, May 3, 2020.

Copyright © 2020 by the Congress of Neurological Surgeons **BACKGROUND:** The supraorbital (SO) eyebrow craniotomy provides minimally invasive access to the anterior and middle fossae and parasellar region.

OBJECTIVE: To present a series of patients treated with the SO approach to assess outcomes, the impact of endoscopy, and describe a modified pericranial flap aimed at reducing postoperative frontalis paresis and hypesthesia.

METHODS: A retrospective analysis was undertaken of our prospective database of patients who underwent SO craniotomy for tumor/cyst removal. Patients were evaluated based on pathology, utility of endoscopy, extent of resection, complications, and functional/esthetic recovery.

RESULTS: From 2007 to 2018, 129 operations were performed in 117 patients (54% women; mean age 60 ± 16.5 yr). The most common lesions were meningiomas (43%), gliomas (15%), and metastases (15%). Prior surgery and/or radiation had been performed in 37% and 26% of patients, respectively. Endoscopy was used in 76 (61%) operations and allowed more complete tumor removal in 38 (50%). For first-time operations, gross-total removal was achieved in 78%. Major complications included stroke (3%), cranial nerve deficit (3%), acute hematoma (1%), and cerebrospinal fluid leak (1%). The modified pericranial flap technique used in 18 recent patients resulted in a shorter duration of transient frontalis paresis and forehead hypesthesia with complete functional recovery in all 18.

CONCLUSION: The SO craniotomy is an effective keyhole approach for intra- and extraaxial tumors. Endoscopic assistance may allow additional tumor removal in almost 30% of the cases. The modified pericranial flap appears to accelerate functional recovery, although additional patients and follow-up are required to better assess this technique.

KEY WORDS: Keyhole approach, Minimally invasive, Outcomes, Supraorbital eyebrow craniotomy, Brain tumor, Craniopharyngioma, Endoscopy, Glioma, Meningioma, Metastasis, Supraorbital craniotomy

Operative Neurosurgery 0:1-11, 2020

DOI: 10.1093/ons/opaa217

