Surgical Clinical Trials for High Grade Gliomas

Achal Singh Achrol, M.D.

Chief, Glioma Surgery Program, John Wayne Cancer Institute
Director, Neurovascular Surgery, Pacific Neuroscience Institute
Providence Saint John’s Health Center
Outline

- High grade glioma and glioblastoma overview, standard therapies
- Extent of surgical resection and fluorescence-guided surgery
- Overview of neurosurgical trials in high grade glioma and glioblastoma
- Current experience with intratumoral convection enhanced delivery therapies at PNI and JWCI

Achal Singh Achrol M.D. achrol@jwci.org
Introduction

- Glioblastoma is the most common primary brain tumor

- Incidence highest in patients 45-55 years old – “prime of life”

- Median survival 15 months with best current therapy involving surgery and chemoradiation (1-5% survive three years after diagnosis)

- Hallmarks of tumor:
 - Aggressive, infiltrative growth and vasogenic edema
 - Necrosis
 - Microvascular proliferation
Benefit of Complete Microsurgical Resection

<table>
<thead>
<tr>
<th>Study</th>
<th>Extent of Resection</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete</td>
<td>Subtotal</td>
<td>Biopsy</td>
<td></td>
</tr>
<tr>
<td>EORTC 26981¹</td>
<td>14.2 months</td>
<td>11.7 months</td>
<td>7.8 months</td>
<td></td>
</tr>
<tr>
<td>Median OS with RT alone</td>
<td>15.0%</td>
<td>9.4%</td>
<td>4.6%</td>
<td></td>
</tr>
<tr>
<td>2-year survival with RT alone</td>
<td>18.8 months</td>
<td>13.5 months</td>
<td>9.4 months</td>
<td></td>
</tr>
<tr>
<td>Median OS with RT + temozolomide</td>
<td>38.4%</td>
<td>23.7%</td>
<td>10.4%</td>
<td></td>
</tr>
<tr>
<td>2-year survival with RT + temozolomide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-ALA²</td>
<td>16.9 months</td>
<td>11.8 months</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Median OS</td>
<td></td>
<td>26%</td>
<td>7%</td>
<td>–</td>
</tr>
<tr>
<td>2-year survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consensus that maximal safe resection is goal even when full resection not possible is reflected across guidelines

1 - Stupp et al *Lancet Oncology* 2009
2 - Stummer et al *Neurosurgery* 2008
Fluorescence-Guided Surgery (FGS)

- Improved intraoperative visualization in real-time
- Permits more extensive resection of malignant brain tumors with infiltrative biology
- Permits safer resection of eloquent malignant brain tumors in combination with intraoperative motor and language mapping
- Impacts overall survival and has potential to reduce neurologic deficits
GBM MGMT Methylation and Chemoradiation Response

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>2-yr</th>
<th>3-yr</th>
<th>4-yr</th>
<th>5-yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT unmethylated TMZ</td>
<td>12.6 mos</td>
<td>14.8%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>8.3%</td>
</tr>
<tr>
<td>RT only</td>
<td>11.8 mos</td>
<td>1.8%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>MGMT methylated TMZ</td>
<td>23.4 mos</td>
<td>48.9%</td>
<td>23.1%</td>
<td>23.1%</td>
<td>13.8%</td>
</tr>
<tr>
<td>RT only</td>
<td>15.3 mos</td>
<td>23.9%</td>
<td>7.8%</td>
<td>7.8%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

Stupp et al Median OS MGMT-M 23.4 mos vs. MGMT-UM 12.6 mos
Summary of Current GBM Therapies

- Microsurgical resection is beneficial
 - Goal is maximum safe cytoreduction
 - Molecular profiling of tissue for targeted therapy selection

- Radiotherapy with concurrent and adjuvant Temozolomide is the standard of care
 - Maintenance Temozolomide x 6-12 months after RT

- Bevacizumab can be used at 1st Failure
- Novo-TTF is approved for recurrent GBM
- Consider rechallenge with Temozolomide and Re-Irradiation (ERRT, SRS)
- **Clinical Trials**: Targeted Therapies, Immunotherapies, Intratumoral Therapies

Achal Singh Achrol M.D. achrol@jwci.org
Neurosurgical Trials in HGG and GBM

- Biological
 - Gene Therapy
 - Viral Vectors
 - Synthetic Vectors
 - Immunomodulation
 - Immunotoxins
 - Immunostimulation
 - Cell-Based Immune Therapies

- Nonbiological
 - Chemotherapy
 - Implant
 - Device-Assisted Infusion
 - Thermal
 - Nanoparticle-Based
 - Stereotactic Laser
 - Radiation
 - Brachytherapy
 - Nanoparticle Augmentation
 - Photodynamic Therapy

Achal Singh Achrol M.D. achrol@jwci.org

PACIFIC NEUROSCIENCE INSTITUTE™

PACIFICNEURO.ORG
Convection-Enhanced Delivery Experience at JWCI and PNI

Figure 1: Schematic of MDNA55 Mechanism of Action
MDNA55: A TARGETED DUAL-ACTION IMMUNOTHERAPEUTIC

Drug Profile And Prior Clinical Studies At A Glance

Convection-Enhanced Delivery (CED) of MDNA55 in Adults With Glioblastoma at First Recurrence or Progression

What Features Render MDNA55 A Rational Choice For Treatment Of Recurrent Glioblastoma?

- MDNA55 is a dual-action immunotherapeutic agent targeting the interleukin-4 Receptor (IL-4R)
- A majority of brain tumors, especially recurrent glioblastoma (RGB), substantially over-express IL-4R, a target that is not expressed in normal brain
- MDNA55 is directly cytotoxic to GB cells and tumor initiating stem cells through specific targeting of IL-4R
- GB has a robust immunosuppressive tumor microenvironment (TME) comprised of Tumor Associated Macrophages (TAMs) and Myeloid Derived Suppressor Cells (MDSCs) which over-express IL-4R
- IL-4R is essential for the immunosuppressive function of TAMs and MDSCs in GB patients
- By purging the TME, MDNA55 also acts as an immunotherapeutic agent as it un-blinds the immune system to GB cells
- Unlike Temozolomide and other alkylating agents, MGMT positive cancer cells are sensitive to MDNA55
- Pro-apoptotic domain of MDNA55 is far more potent than chemotherapeutic agents
- The blood brain barrier (BBB) blocks transport of systemic or orally delivered drugs to the brain tumor
- MDNA55 by-passes the BBB as it is delivered directly into the tumor using a minimally invasive method called Convection Enhanced Delivery (CED)
- CED enables accumulation of a high concentration of MDNA55 in the tumor and the TME while limiting systemic toxicity
- Precision CED technology ensures accurate catheter placement, allows real-time monitoring and optimizes drug distribution by using novel catheters thereby improving the efficacy and safety profile of MDNA55

Achal Singh Achrol M.D. achrol@jwci.org

PACIFIC NEUROSCIENCE INSTITUTE™
PACIFICNEURO.ORG
Patient #1: Segmented Tumor and Clinical Target
Patient #1: Catheter Placement Plan
Patient #1: Pre-Op IV Contrast vs. Intra-op CED Distribution
Patient #2: Segmented Tumor and Clinical Target
Patient #2: Catheter Placement Plan
Patient #2: Pre-Op IV Contrast vs. Intra-op CED Distribution
Patient #3: Segmented Tumor and Clinical Target
Patient #3: Catheter Placement Plan
Patient #3: Catheter Placement Plan (CT hardware avoidance)
Patient #3: Pre-Op IV Contrast vs. Intra-op CED Distribution
Summary

- New treatment approaches are required for GBM involving maximizing surgical resection and targeting remaining infiltrative cancer cells due to high local recurrence

- Use of adjuvant therapies will remain essential for providing tumor control and prevention of relapse

- Other novel therapies such as immunotherapy and intratumoral convection-enhanced delivery will also play an important role in GBM management